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Abstract—Distributed fusion has gained attention for its po-
tential in tasks like tracking across sensor networks. Advances in
communication and computational technologies enable deploying
deep learning at network edges. This paper proposes a novel
attention-based distributed fusion approach comprising three
components: Optimal Distributed Set-Theoretic Information
Flooding (ODSIF), an Encoding System (ES), and a Crossmodal-
Conformer (CMCM). ODSIF exchanges and balances local and
received data weights, while ES converts sensor node information
into Gaussian heat maps. These heat maps are processed by
CMCM to generate distributed fusion results independently at
each node, eliminating the need for data association, a key step in
traditional methods. The attention mechanism further mitigates
outliers’ impact, ensuring robustness with less accurate sensor
data. Simulations using Stone Soup, featuring three targets and
seven sensors, demonstrate the proposed method’s superiority
over DSIF, Confidence-Informed DSIF (C-DSIF), and Conformer.

I. INTRODUCTION

With the advances in computational and communication
technologies, distributed fusion has garnered significant in-
terest from both industry and academia, in a wide range
of applications, including distributed tracking [1], e-health
[2], environmental and traffic monitoring [3], and battlefield
surveillance [4]. Among these, tracking multiple targets from
various viewpoints using a distributed sensor network is a
crucial technology underpinning many applications, which
forms the application example discussed in this paper.

Several approaches have been proposed for distributed fu-
sion by reducing differences in the information shared by
local agents throughout the network. These can generally be
classified according to the applied factors, such as consensus
on estimates (CE) [5], [6], consensus on measurements (CM)
[7], [8], and consensus on information (CI) [9], [10]. To
achieve consensus, in general, the arithmetic average (AA)
or geometric average (GA) fusion is applied to those fac-
tors which have been discussed in detail in [11]. However,
arithmetic average fusion is prone to potential outliers in
the information shared between networks, coupled with its
limited capacity to manage such outliers [1]. In contrast,
geometric fusion involves various challenges, particularly in
defining the weights and covariance terms, which complicates
its implementation [12]. In addition, consensus algorithms are
expected to be applied to the same target with information

shared across networks to mitigate the degradation of the
results due to the potential fusion of information from different
targets.

The conventional consensus-based algorithms often involve
achieving global agreements, adding more assumptions, and/or
pre-defining hyperparameters. Unlike conventional methods,
we explore the potential of using deep learning to achieve
consensus among the nodes. With more devices at the network
edge capable of supporting deep learning-based models, the
use of a deep learning-based fusion algorithm has become
increasingly viable. In this paper, we explore the potential
of using attention-based deep learning models, such as trans-
former [13] and conformer [14], for the fusion of distributed
sensor data. The transformer [13] incorporates attention mech-
anisms, enabling it to process sequences of variable length,
such as sentences, in natural language processing (NLP).
Following its success in NLP, transformer-based architectures
such as Vision Transformer (ViT) [15] and Conformer [14]
have set new benchmarks in computer vision and audio signal
processing, respectively. Moreover, the quest for the use of
attention mechanisms beyond a single modality has led to
the development of multimodal fusion approaches within a
transformer-based framework, notably in audio-visual [16]
and other multimodal contexts [17]. Given these successes,
we are interested in studying whether the transformer-based
architecture could be used to fuse information in distributed
tracking, and whether achieving consensus is still crucial in
distributed fusion.

In this paper, we introduce a novel attention-based dis-
tributed fusion method for distributed target tracking, aiming to
improve tracking accuracy in the presence of unreliable sensor
measurements. This novel approach, distributed crossmodal-
conformer (D-CMCM), comprises three main components,
namely, an optimal distributed set-theoretic information flood-
ing (ODSIF) algorithm, a shared information encoding system
(ES), and a crossmodal-conformer (CMCM). In this approach,
an attention mechanism is integrated into distributed fusion,
thus eliminating the need for data association in distributed
fusion to match the target identities and the need to achieve
consensus on shared information which may contain subtantial
outliers. The organization of this paper is as follows. The pro-
posed algorithm is described in Section II. Section III presents



numerical evaluations of our approach. Finally, Section IV
concludes the paper and outlines potential directions for future
research.

II. PROPOSED D-CMCM METHOD

The proposed D-CMCM consists of three main modules:
ODSIF, ES, and CMCM. The module ODSIF shares the infor-
mation from each local agent, such as the local point estimates
and distances between local and global estimates, across the
distributed sensor network through the dynamic connection
topology. Local agents then use the ES module to convert
received local information into 2D heat maps. Moreover, the
distance information determines the weighting factor for fu-
sion within the cross-modal conformer. The 2D Gaussian heat
maps, comprising the local information map IL ∈ RH×W×1

and received information map IR ∈ RH×W×1, are processed
by the CMCM to provide the distributed fusion results.

A. The ODSIF Algorithm

At time t, each node in the distributed network compiles
a specific set of information for sharing, denoted for the s-
th sensor as Ist = {X̂ s

t , d
s
t−1}. Here, X̂ s

t = {x̂1
t , . . . , x̂

n
t }

represents the set of local estimates of the target states, where
n signifies the target index. The term dst−1 indicates the
minimum Euclidean distance between the set of local estimates
X̂ s

t−1 and the set of fused information X s

t−1 at the time t− 1.
Since sensor nodes communicate only with their neighbors

in the topology, the information-sharing process is run itera-
tively to reach non-directly connected nodes. At time t, during
the initial iteration i = 0, the known information set for
the s-th sensor is Os

t (0 ) = Ist , referred to as the occupied
information set. Sensor s also receives information from its
neighbors, denoted as Rs

t (0 ) =
⋃

j∈N s
t
Oj

t (0 ), where N s
t

is the set of neighbors of the s-th sensor at time t, and j
indexes the neighboring sensors. For simplicity, the time term
t is omitted in this section.

During each iteration, the occupied information set is up-
dated as follows:

Os(i) = Os(i− 1) ∪Rs(i− 1), (1)

where the received information set Rs(i) is updated by:

Rs(i− 1) =
⋃

j∈N s

{Oj(i− 1) \ Os(i− 1)}, (2)

where Oj(i−1)\Os(i−1) includes only the novel information
from the received setOj(i−1) not already present inOs(i−1).
To prevent indefinite iteration, a termination condition must
be established, which stops the process when the specified
criterion is met. An ideal termination condition is when the
received information set Rs(i) = ∅, indicating that the sensor
s has acquired all possible information from the network.
However, in extensive networks with numerous sensor nodes,
achieving this ideal state may be computationally prohibitive.
To address this, we introduce the metric C s(i) = c(i)

a(i) , which
measures the proportion of the network from which the sensor
s has received information, allowing data fusion using only a

subset of the network. Here, c(i) is the number of sensors
that shared information with s, and a(i) is the total number
of active sensors, which was counted during the sharing. If
C s(i) exceeds a pre-defined threshold C, the sharing process
is terminated.

Upon receiving information from other nodes, we derive
weights from the distance term d in each information set I
from the known set O, assigning higher weights to estimates
with smaller d, thus improving the subsequent fusion step. For
sensor s, let dL represent dst−1 as the local distance, and dR
denote the average distance derived from all distance values
dn ̸=s
t−1 in the received information set Os. The weights assigned

to the local and received information, denoted by ωL and ωR,
respectively, are computed as follows:

ωL =
dR

dL + dR
, ωR =

dL
dL + dR

. (3)

The pseude code of ODSIF is given in Algorithm 1.

Algorithm 1 ODSIF Algorithm

Require: t, {X̂ s
t , d

s
t−1} . . . {X̂

j
t , d

j
t−1}, N s

t , i = 0, C
1: if i = 0 then
2: Initialize the occupied information set: Os

t (0)← Ist
3: Receive information from neighbor sensor nodes:

Rs
t (0)←

⋃
j∈N s

t
Oj

t (0)
4: end if
5: while True do
6: Update the occupied information set as in Eq. (1)
7: Update the received information set as in Eq. (2)
8: i ← i + 1
9: if i ≤ 3 then

10: if Rs(i) = ∅ then
11: break
12: end if
13: else if i ≤ 7 then
14: Calculate the metric: C s(i)← c(i)

a(i)

15: if C s(i) > C then
16: break
17: end if
18: else
19: break
20: end if
21: end while
22: Calculate the weight terms as in Eq. (3)

B. Encoding System
In ODSIF, the set of local point estimates and distance

measures is shared by local sensors. The ES converts elements
from these sets into two Gaussian heat maps, i.e. indicating the
possible estimates of the target real state, to support learning
of the proposed model. As shown in Fig. 1, the image on
the left shows the local information map, while the image
on the right shows the received information map. Instead
of normalizing the values of each pixel in the heat map,
the maximum likelihood value of overlapping distributions is
recorded, preserving peaks.



Fig. 1. Two Gaussian heat maps generated by the encoding system. The left
is the local information map, and the right is the received information map.

Fig. 2. The architecture of the Crossmodal-Conformer block, where different
modalities are denoted as M1 and M2.

C. Crossmodal-Conformer Blocks

The CMCM component is designed to integrate received in-
formation with local data using attention mechanisms. Mirror-
ing the traditional Conformer block structure [14], the CMCM
block includes four sequential components: a feed-forward
module, a novel attention module, a convolution module, and
a final feed-forward module. While the final feed-forward and
convolution modules are adopted from the original Conformer,
the CMCM block introduces a new framework and replaces
the standard self-attention module with a novel attention mech-
anism, as shown in Figure 2. This modification enhances the
interaction between local and received information, optimizing
information fusion within the distributed tracking framework.

1) Feed-Foward Module: The architecture of the feed-
forward module in the CMCM block aligns with that of

the Transformer and Conformer, as detailed in [13]. How-
ever, a notable adaptation in our approach is that the initial
feed-forward module in the CMCM block is designed to
process dual inputs, corresponding to the local information
map and the received information map, from each respective
modality. Additionally, we incorporate pre-normalization [18]
and dropout techniques within this module to enhance its
robustness and generalization capability. Before entering into
the attention module, the residual module is applied with only
half of the value from outputs of the first feed-forward module
added to the residuals. The same operation is applied to the
two modalities, respectively.

2) Attention Module: Distinct from the Transformer and
Conformer, the attention module in the CMCM encompasses
both self-attention and crossmodal attention mechanisms. The
multi-headed self-attention (MHSA) mechanism [13] is tra-
ditionally applied within a single modality. In our CMCM’s
self-attention module, MHSA is employed to process the
local information. To incorporate attention from the received
information, distinct inputs are utilized, with Keys and Queries
derived from the received information and Values from the
local information, facilitating effective crossmodal attention
integration.

The adaptation fusion (AF ) module is introduced to inte-
grate the outputs from the self-attention and cross-attention
modules, denoted as SA and CA, respectively. Utilizing the
weights derived from ODSIF, as specified in Equation (3), the
output of the AF module is formulated as a weighted sum of
the two attention module embeddings:

AF = ωL · SA+ ωR · CA, (4)

where the two weight terms ωL and ωR are assigned to the
self-attention and cross-attention outputs following equation 3,
respectively. A dropout module is also connected behind the
adapt fusion module in the Attention Module.

III. EXPERIMENTAL RESULTS

A. Experimental Settings

To address the lack of real-world datasets for distributed
tracking, we used the Stonesoup Python package [19], [20]
from DSTL, UK 1. In a 512 × 512 square-meter environment,
three targets are monitored by seven sensors with dynamic
network topology, and trajectories generation using Extended
Kalman Filter (EKF). Sensor estimates follow Gaussian distri-
butions (std. dev. 80) to simulate unreliability. The experiment
spans 1000 frames across four sequences, generating 7000
Gaussian heat maps for system testing in noisy conditions.
A pretrained ResNet-18 [21] is used as feature extractor,
followed by two CMCM blocks, each with four heads in both
self-attention and cross-attention modules. The predictor only
produces point estimates that exceed the confidence threshold.
The learning rate (Adam optimizer) is set at 0.0005, reduced
by 90% every 50 epochs, and the attention weights are set at
0.5 during training. During experiments, we simulate scenarios

1DSTL: Defence Science and Technology Laboratory, UK



where information from one, two, three, or all seven nodes is
available to each local sensor for fusion. Evaluation metrics
include OSPA [22], precision (error distance below a strict
20-pixel threshold), and success rate (ratio of successful steps
across the entire trajectories).

B. Results on Simulations

TABLE I
OSPA COMPARISONS ON DIFFERENT APPROACHES.

Method OSPA
1 Node 2 Node 3 Node 7 Node

DSIF-AA (pm) 79.9 40.3 39.5 35.4
DSIF-AA 79.9 68.7 50.3 48.6

C-DSIF-AA (pm) 79.9 39.2 36.7 32.5
C-DSIF-AA 79.9 50.2 48.8 41.5

ODSIF-Conformer 19.2 12.1 11.3 8.8
ODSIF-D-CMCM 18.5 4.7 4.6 4.1

TABLE II
PRECISION COMPARISONS ON DIFFERENT APPROACHES.

Method Precision
1 Node 2 Node 3 Node 7 Node

ODSIF-Conformer 66.0 80.6 83.3 85.8
ODSIF-D-CMCM 67.1 95.0 95.1 95.1

TABLE III
ABLATION STUDY ON DIFFERENT CONFIGURATIONS.

Method 1 Node 2 Node
OSPA PR SR OSPA PR SR

FE 20.2 61.3 58.2 20.0 61.8 58.6
FE+Conformer 19.2 66.0 64.4 12.1 80.6 78.7
FE+D-CMCM 18.5 67.1 64.5 4.8 94.9 94.5

FE+D-CMCM+W 18.5 67.1 64.5 4.7 95.0 94.5

To evaluate the effectiveness of our method, we compare it
with the Conformer model [14], DSIF-AA [23] and C-DSIF-
AA [1]. Comparisons are conducted under two consensus
conditions: partial consensus (information from a subset of
the network) and complete consensus (information from the
entire network). For a comprehensive evaluation, we em-
ploy two matching settings: perfect matching (correct target
associations) and random matching (arbitrary associations).
ODSIF collects information from other nodes to feed both
Conformer and D-CMCM. However, Conformer only accepts
a single input, and ODSIF does not provide weight outputs
for Conformer, unlike D-CMCM. Additionally, the encoding
system compresses local and received information into the
same map for Conformer.

1) OSPA Comparision: Table I shows OSPA metrics for
different methods across configurations. ODSIF-D-CMCM
achieves the lowest OSPA distances, indicating superior fused
tracking accuracy. The performance gap between Conformer
and D-CMCM narrows with a single sensor node due to
reduced cross-attention impact, but both outperform AA fu-
sion methods. With more nodes, distributed fusion enhances
performance for all methods. However, AA methods require
good data association, such as perfect matching, to obtain this
improvement. Unlike AA methods, deep learning approaches
can avoid this requirement. Notably, D-CMCM maintains

consistent accuracy across 2, 3, and 7 nodes, demonstrating
resilience to network consensus variations and suitability for
diverse scenarios.

2) Precision Comparision: To evaluate the performance
of deep learning-based methods in distributed fusion, we
employ a custom-defined precision metric. As illustrated in
Table II, the precision of both ODSIF-Conformer and ODSIF-
D-CMCM is assessed in various configurations involving a
different number of participating nodes. Consistent with the
observed OSPA performance trends, an increase in the number
of participating nodes correlates with an improvement in pre-
cision for both methods. In particular, even with information
sourced from only a portion of the network, both methods
achieve a high level of precision, indicating that complete
network consensus is not critical for deep learning-based
distributed fusions to maintain high performance. Furthermore,
the comparison reveals a consistent performance improvement
of ODSIF-D-CMCM over ODSIF-Conformer under identical
settings, underlying the beneficial impact of the cross-attention
mechanism in enhancing the effectiveness of distributed fu-
sion.

C. Ablation Studies

Ablation studies were conducted to evaluate the contribu-
tions of individual components in our deep learning-based
distributed fusion models, as detailed in Table III. The results
show significant performance gains with deep learning-based
fusion methods, even with two sensor nodes, prompted by the
focus on one- and two-node configurations. Although adding
cross-attention to self-attention offers limited benefits with
sparse external information, its impact becomes substantial
in two-node setups where received information is utilized.
Additionally, a weighting mechanism that balances self- and
cross-attention further enhances performance.

IV. CONCLUSION

In this study, we departed from traditional consensus-based
approaches to distributed fusion by incorporating attention
mechanisms to enhance local fusion processes with insights
from received information. We have introduced D-CMCM,
a novel deep learning-based distributed fusion method that
combines ODSIF, an encoding system, and a Crossmodal-
Conformer. The ODSIF algorithm facilitates dissemination
of information and calibrates the influence of local versus
received data for fusion. The encoding system converts in-
formation into a heat map format for integration into the deep
learning framework, while the Crossmodal-Conformer refines
local estimates using the attention mechanism. Our extensive
numerical experiments validate D-CMCM’s effectiveness and
superiority, potentially setting new benchmarks in distributed
fusion. Future work will focus on using temporal sequences
in tracking tasks and addressing challenges posed by limited
sensing fields, and further enhancing distributed fusion system
capabilities.



REFERENCES

[1] P. Wu, J. Zhao, S. Goudarzi, and W. Wang, “Partial Arithmetic Consen-
sus based Distributed Intensity Particle Flow SMC-PHD Filter for Multi-
Target Tracking,” in Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 5078–
5082.

[2] E. Fadel, V. C. Gungor, L. Nassef, N. Akkari, M. A. Malik, S. Almasri,
and I. F. Akyildiz, “A survey on wireless sensor networks for smart
grid,” Computer Communications, vol. 71, pp. 22–33, 2015.

[3] B. E. Bilgin and V. C. Gungor, “Adaptive error control in wireless sensor
networks under harsh smart grid environments,” Sensor Review, vol. 32,
no. 3, pp. 203–211, 2012.

[4] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[5] P. Millán, L. Orihuela, C. Vivas, and F. R. Ru-
bio, “Distributed consensus-based estimation considering net-
work induced delays and dropouts,” Automatica, vol. 48,
no. 10, pp. 2726–2729, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0005109812003639

[6] S. Zhu, C. Chen, X. Ma, B. Yang, and X. Guan, “Consensus Based
Estimation Over Relay Assisted Sensor Networks for Situation Moni-
toring,” IEEE Journal of Selected Topics in Signal Processing, vol. 9,
no. 2, pp. 278–291, 2015.

[7] P. J. Legree, J. Psotka, T. Tremble, and D. R. Bourne, “Using consensus
based measurement to assess emotional intelligence,” Emotional Intel-
ligence: An International Handbook, pp. 155–179, 2005.

[8] S. Robertson, P. Kremer, B. Aisbett, J. Tran, and E. Cerin, “Consensus
on measurement properties and feasibility of performance tests for the
exercise and sport sciences: a Delphi study,” Sports Medicine-Open,
vol. 3, no. 1, pp. 1–10, 2017.

[9] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano,
“Consensus-Based Linear and Nonlinear Filtering,” IEEE Transactions
on Automatic Control, vol. 60, no. 5, pp. 1410–1415, 2015.

[10] ——, “Consensus-based algorithms for distributed filtering,” in Proceed-
ings of 51st IEEE Conference on Decision and Control (CDC). IEEE,
2012, pp. 794–799.

[11] K. Da, T. Li, Y. Zhu, H. Fan, and Q. Fu, “Recent advances in multisensor
multitarget tracking using random finite set,” Frontiers of Information
Technology & Electronic Engineering, vol. 22, no. 1, pp. 5–24, 2021.

[12] T. Li, V. Elvira, H. Fan, and J. M. Corchado, “Local-diffusion-based dis-
tributed SMC-PHD filtering using sensors with limited sensing range,”
IEEE Sensors Journal, vol. 19, no. 4, pp. 1580–1589, 2018.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[14] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-augmented
transformer for speech recognition,” arXiv preprint arXiv:2005.08100,
2020.

[15] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[16] Y.-B. Lin and Y.-C. F. Wang, “Audiovisual transformer with instance
attention for audio-visual event localization,” in Proceedings of the Asian
Conference on Computer Vision, 2020.

[17] Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and
R. Salakhutdinov, “Multimodal transformer for unaligned multimodal
language sequences,” in Proceedings of the conference. Association for
Computational Linguistics. Meeting, vol. 2019. NIH Public Access,
2019, p. 6558.

[18] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao,
“Learning deep transformer models for machine translation,” arXiv
preprint arXiv:1906.01787, 2019.

[19] P. A. Thomas, J. Barr, B. Balaji, and K. White, “An open
source framework for tracking and state estimation (’Stone Soup’),”
in Proceedings of Defense + Security, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:67294683

[20] J. Barr, O. Harrald, S. Hiscocks, N. Perree, H. Pritchett, S. Vidal,
J. Wright, P. Carniglia, E. Hunter, D. Kirkland, D. Raval, S. Zheng,
A. Young, B. Balaji, S. Maskell, M. Hernandez, and L. Vladimirov,
“Stone Soup open source framework for tracking and state estimation:
enhancements and applications,” in Proceedings of Signal Processing,

Sensor/Information Fusion, and Target Recognition XXXI, I. Kadar,
E. P. Blasch, and L. L. Grewe, Eds., vol. 12122, International Society
for Optics and Photonics. SPIE, 2022, p. 1212205. [Online]. Available:
https://doi.org/10.1117/12.2618495

[21] S. Targ, D. Almeida, and K. Lyman, “Resnet in resnet:
Generalizing residual architectures,” 2016. [Online]. Available:
https://arxiv.org/abs/1603.08029

[22] B. Ristic, B.-N. Vo, D. Clark, and B.-T. Vo, “A metric for performance
evaluation of multi-target tracking algorithms,” IEEE Transactions on
Signal Processing, vol. 59, no. 7, pp. 3452–3457, 2011.

[23] T. Li and F. Hlawatsch, “A distributed particle-PHD filter using
arithmetic-average fusion of Gaussian mixture parameters,” Information
Fusion, vol. 73, pp. 111–124, 2021.


